Publications

Preprints

Journal Articles

Yu, S., …, Loose, N., … and Pritchard, M.S. (2023). ClimSim: A Large Multi-Scale Dataset for Hybrid Physics-ML Climate Emulation. Advances in Neural Information Processing Systems, url.
Loose, N., Marques, G.M., Adcroft, A., Bachman, S., Griffies, S.M., Grooms, I., Hallberg, R.W. and Jansen, M. (2022). Comparing two parameterizations for the restratification effect of mesoscale eddies in an isopycnal ocean model. Journal of Advances in Modeling Earth Systems. doi: 10.1029/2022MS003518.
Loose, N., Bachman, S., Grooms, I. and Jansen, M. (2022). Diagnosing scale-dependent energy cycles in a high-resolution isopycnal ocean model. Journal of Physical Oceanography. doi: 10.1175/JPO-D-22-0083.1, Open-access preprint: 10.1002/essoar.10511055.2.
Marques, G., Loose, N., Yankovsky, E., Steinberg, J., Chang, C-Y., Bhamidipati, N., Adcroft, A., Fox-Kemper, B., Griffies, S., Hallberg, R., Jansen, M., Khatri, H. and Zanna, L. (2022). NeverWorld2: An idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. Geoscientic Model Development 15, no. 17: 6567-79. doi: 10.5194/gmd-15-6567-2022.
Loose, N., Abernathey, R., Grooms, I., Busecke, J., Guillaumin, A.P., Yankovsky, E., Marques, G., Steinberg, J.M., Ross, A.S., Khatri, H., Bachman, S.D., Zanna, L., Martin, P. (2022). GCM-Filters: A Python Package for Diffusion-based Spatial Filtering of Gridded Data, Journal of Open Source Software. doi: 10.21105/joss.03947.
Grooms, I., Loose, N., Abernathey, R., Steinberg, J.M., Bachman, S.D., Marques, G., Guillaumin A.P., Yankovsky E. (2021). Diffusion-Based Smoothers for Spatial Filtering of Gridded Geophysical Data, Journal of Advances in Modeling Earth Systems. doi: 10.1029/2021MS002552.
Loose, N. and Heimbach, P (2021). Leveraging Uncertainty Quantification to Design Ocean Climate Observing Systems. Journal of Advances in Modeling Earth Systems. doi: 10.1029/2020MS002386.
Loose, N., Heimbach, P., Pillar, H. and Nisancioglu, K. (2020) Quantifying Dynamical Proxy Potential through Shared Adjustment Physics in the North Atlantic. Journal of Geophysical Research: Oceans 125, no. 9. doi: 10.1029/2020JC016112. Selected as Eos Research Spotlight and highlighted in this StoryMap.
Fujii, Y., Remy, E., Zuo, H., Oke, P., Halliwell, G., Gasparin, F., Benkiran, M., Loose, N., Cummings, J., Xie, J., Xue, Y., Masuda, S., Smith, G.C., Balmaseda, M., Germineaud, C., Lea, D.J., Larnicol, G., Bertino, L., Bonaduce, A., Brasseur, P., Donlon, C., Heimbach, P., Kim, Y., Kourafalou, V., Le Traon, P-Y., Martin, M., Paturi, S., Tranchant, B. and Usui, N. (2019). Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks. Front. Mar. Sci. 6:417. doi: 10.3389/fmars.2019.00417

Thesis

Loose, N. (2019). Adjoint Modeling and Observing System Design in the Subpolar North Atlantic, Ph.D. Dissertation, University of Bergen, Norway. http://bora.uib.no/handle/1956/24456.